Cancer is caused by disorganization of epithelial tissue and not by DNA mutations

Mutations in the genomes of the tumor cell long thought to cause cancer is negated by QED induced ionizing radiation produced   as the MMP-3 enzyme disorganizes the basement membrane of epithelial tissues

Background Epithelial tissue forming the outer layers of the skin protect exterior surface of the body, but also provide protection for hollow organs and glands including the breast, prostate, colon, and lung from body fluids.  Epithelial tissue is organized by a submicron thick < 100 nm basement membrane (BM) that provides the structural scaffold template for the extracellular matrix (ECM). Breakdown of the BM is associated with the spread of tumors, e.g., loss of integrity of the BM in mice is known to cause tumors. See … 

Loss of integrity in the ECM is triggered by enzymes called matrix metalloproteinases (MMPs). Breast tumors in particular are known to have an increased amount of MMPs. Indeed, MMPs induce the epithelial-mesenchymal transition (EMT) that disorganize the BM and allows the dissociated epithelial tissue to move through the body. In breast cancer, EMT allows tumor cells more mobility to penetrate barriers like the walls of lymph and blood vessels, facilitating metastasis, e.g., the MMP-3 enzyme causes normal cells to produce a protein called Rac1b that is found only in cancers. Currently, Rac1b is thought to stimulate the production of highly reactive oxygen species (ROS) molecules leading to cancer by damaging the DNA. Ibid

Problem and Hypothesis
The problem with epithelial tissue as the source of DNA damage is that the protein Rac1b lacks a mechanism to produce energy of at least 5 eV from which the ROS of peroxide and hydroxyl radicals form to damage the DNA. The ROS can only be produced by ionizing radiation > 5 eV at ultraviolet (UV) levels or beyond. 

But what is the mechanism of ionizing radiation?

Certainly, there are no UV lasers in body fluids. The hypothesis may therefore be made that epithelial tissue during disorganization somehow emits low level ionizing radiation.

Emission of Ionizing Radiation by Submicron Entities
Cancer research is only beginning to recognize the remarkable fact that submicron entities present in body fluids emit low-level ionizing radiation. Over the past few decades, this fact has been supported by experimental evidence that shows submicron entities comprising nanoparticles (NPs) of natural and man-made materials cause DNA damage. Remarkably, the NPs alone – without lasers – somehow induce DNA damage in body fluids. See at “DNA damage by NPs”, 2009 and  “DNA damage by signaling,” 2010.

QED induced EM radiation
Recently, the theory of QED induced EM radiation was proposed to explain the remarkable fact that NPs alone cause DNA damage. QED stands for quantum electrodynamics and EM for electromagnetic. Ibid. By this theory, quantum mechanics forbids atoms in submicron NPs to have specific heat. This may be understood from the fact the thermal energy of the atom given by the Einstein-Hopf relation depends on wavelength under the constraint that only wavelengths < 1 micron are allowed to “fit inside” submicron entities. But quantum mechanics only allows submicron wavelengths to be populated at temperatures greater than about 6000 K. At ambient temperature, therefore, the heat capacity of submicron entities is “frozen out”, and so NPs cannot conserve absorbed EM energy by an increase in temperature. Absent UV lasers, NPs in body fluids absorb EM energy from colliding water molecules. Conservation then proceeds by the QED induced frequency up-conversion of absorbed EM collision energy to the fundamental resonance of the NP.  Typically, ionizing QED radiation is emitted at UV or higher levels thereby explaining how NPs alone produce the ROS that damages DNA. Specifically, ionizing radiation > 5 eV necessary for forming ROS is produced for NPs < 100 nm. Ibid

Epithelial cell induced DNA damage
Epithelial tissue like NPs induce DNA damage provided submicron entities are produced upon disorganization by MMPs. QED induced radiation is emitted if the size of the biological entity is < 100 nm and has a refractive index greater than the surroundings. For biological materials, the index is about 1.5 > 1.33 for water. But epithelial cells themselves are not submicron and at 10-100 microns in the disorganized state do not emit ionizing radiation. However, ionizing radiation is emitted from the < 100 nm BM upon disorganization of epithelial tissue by MMPs.

By the theory of QED induced radiations, the disorganization of the BM by MMP-3 produces the ionizing radiation that forms the ROS that in turn damage the DNA. Current thought that the Rac1b protein itself damages the DNA is therefore placed in question. Indeed, the Rac1b protein is a cancer marker only because it forms in the process of ionizing radiation be produced by the disorganized BM. Nevertheless, Rac1b as a small protein is a submicron entity that once in the disorganized state like the BM also produces ionizing radiations that may damage surrounding DNA. See Press Release


1. During disorganization by MMP-3, the BM emits QED induced ionizing radiation forming ROS that damage the DNA and produce the Rac1b protein found in most cancers.

2. Contrarily, the ROS are not induced by Rac1b to stimulate the development of cancer by directly affecting genomic DNA. Rather, the ROS are formed in a side reaction from the QED induced radiation emitted from the disorganized BM. Nevertheless, the Rac1b protein as a submicron entity is the product of the ROS and may also damage nearby DNA.

3. Loss of epithelial tissue organization produces QED induced EM radiation that damages the DNA before mutations occur in the genome of the tumor cell by other factors.

4. Oncogenes are activated by QED induced radiation from changes in the BM structure by MMPs.

5. UV absorptive drugs may be used to reduce QED induced radiation and attendant DNA damage from epithelial tissue disorganization by MMP-3.

The toxicity of colloidal silver and risk of cancer


Scientific American in 2008 published an article entitled: Do Nanoparticles in Food Pose a Health Risk? The article reports the widespread use of nanoparticles (NPs) in food or food-related products that do not bear the warning that they may pose a health risk. The FDA does not require NPs to be proved safe, but rather requires the foods having NPs to not be harmful. In 2006, the EPA began to regulate nanosilver as a pesticide and as a result companies using nanosilver as an antimicrobial agent are required to register them as pesticides. Friends of the Earth, an environmental group, insist that reporting of nanosilver use by companies should be mandatory, given the potential risks and has suggested the definition of what constitutes a health risk to include NPs < 300 nm in diameter. But Andrew Maynard of the Woodrow Wilson International Center for Scholars notes it is the effect rather than the size that is significant. See

Toxicity by Surface Area and Size

Currently, the mechanism by which NPs pose a health risk is not well understood. NP size controls the surface area and therefore the effectiveness of colloidal silver. NPs are thought to be more reactive than larger particles of the same substance, because they have more surface area and therefore have more opportunity to interact with other substances in their surroundings, i.e., a material that is otherwise harmless at the macroscale is likely to be toxic if it is processed to the nanoscale as NPs. See The problem with quantifying toxicity by NP surface area and size is that both lack a mechanism to produce EM energy of at least 5 eV to form the reactive oxidative species (ROS) necessary to act as bactericidal agents. EM stands for electromagnetic. Similarly, the significance of “effect rather the size” in toxicity suggested by the Wilson Center lacks a mechanism to produce the ROS.

QED Induced EM Radiation Toxicity

More recently, the toxicity mechanism of NPs capable of producing ROS was proposed to find origin in quantum mechanics. Toxicity is found to almost be independent of the material, although silver has received the most attention because of its use as a bactericide in baby food. By this theory, atoms in NPs lack specific heat because at ambient temperature the heat capacity in submicron NPs resides at wavelengths < 1 micron that may only be populated at temperatures greater than about 6000 K. At ambient temperature, the heat capacity is therefore “frozen out”, and so NPs lack the heat capacity to conserve absorbed EM energy from colliding water molecules in body fluids by an increase in temperature. Conservation may only proceed by the QED induced frequency up-conversion of absorbed EM energy to the EM resonance of the NP. QED stands for quantum electrodynamics. Typically, ionizing QED radiation is emitted at UV or higher levels thereby producing the ROS that damage DNA from which cancer may develop. NPs < 100 nm are required to produce ROS through ionizing radiation. In contrast, NPs > 100 nm emit non-ionizing QED radiation in the VIS and IR. See at “DNA damage by NPs”, 2010.

Colloidal Silver

Colloidal silver comprising silver NPs in solution is related to the controversy over the risks of silver NPs in food products. Colloidal silver has been used for fighting infections for thousands of years. But for the last 40 years, silver colloids have been proven to be cancer-causing agents. Indeed, silver is listed in the 1979 Registry of Toxic Effects as causing cancer in animals. Silver finds antibiotic action from the fact that it is a non-selective toxic biocide. See e.g.,  Regardless, fine silver NPs provide greater effectiveness than coarse NPs because toxicity is predicated on exposing the infected region to the largest possible surface area. See

 Safe Colloidal Silver?

Currently, comments to the Scientific American article stated if the widely touted “natural antibiotic” usage of colloidal silver is a potentially dangerous thing, then: Are there any safe colloidal silvers? Or Are the silver components in such preparations larger than problematic?  

Answers to these questions depend on effectiveness. Colloidal silver is perfectly safe if not taken at all, but is not effective if other antibiotic agents are not used. Least effective are silver colloids with coarse NPs > 100 nm because the QED radiation emitted by the NPs in the VIS and IR is non-ionizing. Most effective are fine NPs < 100 nm, but come at the risk of damaging the DNA by UV or higher ionizing radiation that can lead to cancer.

 Moreover, coarse NPs accompanied by fine NPs actually enhance the DNA damage above that by fine NPs alone. Hence, manufacturers would have to guarantee that all NPs in the colloidal silver are > 100 nm to avoid ionizing radiation. Manufacturers of colloidal silver would be required to label the minimum size of NPs in their products to allow the customer himself to weigh the risk of DNA damage to antibiotic effectiveness.  


1. NPs by emitting QED induced ionizing radiation are significant antibiotic agents, but pose a health risk by collateral damage to DNA the consequence of which may lead to cancer. DNA damage must always be considered in the use of NPs as antibiotics.

2. All NP materials produce about the same QED radiation because their refractive indices are similar. Therefore, only the NP size distinguishes whether ionizing or non-ionizing is emitted. Labeling of the minimum size of NPs in a product allows the customer to weigh the respective advantages and disadvantages.

3. Colloidal silver with NPs < 100 nm produce ionizing QED radiation at UV or higher levels that damage the DNA and can lead to cancer even though being used for thousands of years.

4. Safe colloidal silver may be found at minimum effectiveness. If manufacturer control all NPs > 100 nm, non-ionizing QED radiation is then emitted.  Controlling NPs > 300 nm can only err on the safe side.

5. The safest way of avoiding future cancers caused by DNA damage is to ban all NPs < 300 nm from food products, especially baby food.

Nanoparticles do not damage DNA across barriers by signaling molecules

Ionizing radiation emitted by nanoparticles damages the DNA by penetrating barriers instead of the nanoparticle signaling across the barrier for the DNA to be damaged

Damage by Nanoparticles
On November 4, scientists at the University of Bristol announced that nanoparticles (NPs) of cobalt-chromium damaged DNA on the other side of a cellular barrier. See The NPs did not cause the damage by passing through th DNA e barrier which is usually thought. Instead, the Bristol scientists claimed the NPs generated signaling molecules within the barrier cells that were then transmitted to cause damage in cells on the other side of barrier.

However, the NP signaling molecules to induce DNA damage is not likely. Setting aside the fact NPs are inanimate lacking the capability of biological signaling, it is more likely the NPs generate electromagnetic (EM) radiation that readily penetrates the molecular barrier to cause DNA damage. Even if the molecular barrier is replaced with a thin nanometer metal film, the EM radiation can penetrate the film and damage the DNA on the other side.

On October 18-22, at the IEEE Nanomed 2009 Conference in Taiwan, DNA damage was claimed caused by ultraviolet (UV) radiation induced in NPs by quantum electrodynamics (QED). See “DNA damage update” Paper and Presentation at By this theory, water molecules in body fluids transfer upon collision thermal kT energy at infrared (IR) frequencies to the NPs. However, quantum mechanics (QM) forbids the NPs to have specific heat, and therefore the absorbed kT energy from collisions cannot be conserved by an increase in temperature. Instead, conservation proceeds as the IR radiation is induced by QED to be frequency up-converted to the EM confinement of the NP, typically at UV or even higher frequencies. Subsequently, the UV leaks to the surroundings to cause DNA damage.

NPs provide a significant antibacterial agent in food processing, reducing infections in burn treatment, sunscreen skin lotions, and treating cancer tumors. However, there is a darkside. Over the past decade, experiments have unequivocally shown NPs to induce DNA damage and mimic that by conventional ionizing radiation. See Ibid. What enables the NPs to function to benefit mankind while at the same time posing a health risk is the remarkable fact NPs naturally emit a low level source of continuous UV or higher EM radiation.

The NPs need not be irradiated with lasers, as only collisions with surrounding molecules are sufficient to produce ionizing radiation. The wavelength of the EM radiation is given by 2Dn, where D is the NP diameter, and n is its refractive index. In the Bristol tests, D ~ 30 nm and taking an average n ~ 2.3, the EM radiation had a wavelength of about 140 nm and Planck energy or 8.8 eV.

The DNA damage induced by NPs is a cancer risk if not properly repaired. Given that NPs naturally produce low levels of ionizing radiation beyond the UV from surrounding water molecules, and that natural and man-made NPs are ubiquitous, the conjecture may be made that NPs are the most likely cause of cancers in man. Given the increased risk of NPs producing cancer, the regulation of NPs is highly recommended.