Cosmic Dust and the 2010 Lindau Nobel Meeting on Elementary Particles in Cosmology

Background
The Large Hadron Collider (LHC) is of interest to astronomers because elementary particles are thought related to Big Bang cosmology through dark matter and energy in an expanding Universe. Indeed, the recent Lindau Meeting discussed the topic “Dark Matter, Dark Energy, and the LHC.” See http://www.lindau-nobel.org/PublicMeetingProgram.AxCMS?M …  

Scientists George Smoot and John Mather who won the Nobel prize for the Cosmic Background Explorer were joined by physicists David Gross, Carlo Rubbia, Gerard t’Hooft, and Martinus Veltman. Consistent with the theme of the Lindau Meeting on cosmology, Nobel Laureate George Smoot stated:

“The properties of the tiniest particles should dictate what the Universe looks like…”

Meeting Discussion
With regard to dark matter, Smoot himself did not follow through by describing the mechanism by which tiny particles dictate what the Universe looks like, yet claimed cosmologists can model the Universe with gas, photons, and neutrinos giving a Universe of mostly dark matter of which only about 27 percent is visible, while dark energy is expanding the Universe at an accelerated rate. See  http://arstechnica.com/science/news/2010/07/astronomy-an …

Introducing himself as “I’m a measuring kind of guy,” Mather also ignored Smoot’s comment avoiding the mechanism by which tiny particles dictate what we observe in the Universe and instead discussed how astronomers were pinning down the properties of dark matter by gravitational lensing surveys that quantity the distribution of dark matter in the Universe. Ibid

Only Veltman called dark matter “bullsh*t,” but then like Smoot and Mather did not identify the mechanism of how Smoot’s tiny particles dictate what we see and instead proposed an alternative dark matter candidate MOND (Modified Newtonian Dynamics). Only Rubbia connected with Smoot’s statement by suggesting the tiny particles are Weak Interacting Massive Particles (WIMPs) of dark matter in sterile neutrinos, a heavy version of the three familiar flavors of this particle. Ibid

Cosmic Dust
Cosmology is only beginning to recognize that redshift in submicron cosmic dust significantly alters how the Universe looks to us. Redshift in cosmic instead of by the Doppler effect allows one to entertain the cosmology of a static Universe without any need for dark matter and energy.  Given that our knowledge of the Universe by seeing is unequivocally altered by absorption in cosmic dust, Smoot’s comments may be rephrased by:

”The properties of cosmic dust should dictate what the Universe looks like…”

Yet the Lindau Meeting excluded discussion on cosmic dust in cosmology, instead focusing on dark matter based on the anticipated discovery of exotic WIMPs from the LHC experiments. But cosmic dust is of greater importance to cosmology because light from a distant galaxy is redshift upon absorption in cosmic dust without the Doppler shift. Therefore, the redshift Hubble measured in 1929 was most likely caused by cosmic dust having nothing to do with an expanding Universe. Hence, there is no need for dark energy to explain an expanding Universe that is not expanding. Moreover, MOND and surveys of gravitational lensing that support the presence of dark matter are also negated by cosmic dust. See http://www.nanoqed.org at “Dark Energy and Cosmic Dust” and “Reddening and Redshift,” 2009; and “Cosmology by Cosmic Dust -Update,” 2010.

QED induced Redshift in Cosmic Dust
QED induced redshift in cosmic dust is a consequence of QM constraints placed on the conservation of absorbed energy in submicron particles. QED stands for quantum electrodynamics and QM for quantum mechanics.  QM precludes submicron cosmic dust particles (DPs) from having the specific heat capacity necessary to conserve absorbed galaxy photons by an increase in temperature. Instead, conservation proceeds by the creation of QED photons from the total internal reflection (TIR) confinement of the absorbed galaxy photon within the solid DP. But the TIR allows those QED photons normal to the DP surface to leak out redshifted relative to the absorbed galaxy photon – all of this occurring without the Universe expanding. Ibid

How DPs redshift galaxy light may be understood from QM by the QED induced creation of photons of wavelength Lo by supplying EM energy to a QM box with walls separated by Lo/2. For a galaxy photon absorbed in a spherical DP of diameter D, the QED photons are created at a wavelength Lo = 2nD, where n is the index of refraction. In the Universe, the DPs are generally amorphous silicate having n = 1.45 and diameters D < 0.5 microns. For D = 0.25 microns, the QED created photons has Lo = 0.745 microns, and therefore an absorbed Lyman-alpha photon having L = 0.1216 microns is redshift to Z = (Lo – L)/L. ~ 5. If the QED redshift in DPs is interpreted by the Doppler shift, the galaxy recession velocity is 95 % of the speed of light when in fact the galaxy is not receding at all. Ibid

Conclusions
QED induced redshift holds in question the Hubble redshift as proof the Universe is expanding beginning with the Big Bang suggesting a return to a static Universe in dynamic equilibrium once proposed by Einstein. Moreover, astrophysical measurements that rely on Hubble redshift by the Doppler effect grossly over-estimate the rotational velocities of spiral galaxies are far faster than allowed by Newtonian mechanics, thereby suggesting the presence of dark matter to hold the galaxies together. Indeed, redshift in cosmic dust instead of by the Doppler effect answers most of the outstanding problems in cosmology Ibid. The conclusions are.

Dark Energy not needed to explain a Universe that is not expanding
Period-luminosity relation qualified in Cepheid stars
Dark Matter not involved in Gravitational Lensing
Galaxy Rotation Problem resolved without Dark Matter
No need for MOND to explain Galaxy Rotation Problem
Tolman Surface Brightness reduction by (1 + Z)
Explain the Independence of Redshift in Sunyaev-Zeldovich Effect
Light Curve dilation in Supernovae Explosions

The Lindau Meeting on cosmology by elementary particles is trumped by cosmic dust. There is no connection between any findings forthcoming from the LHC on how WIMPS or other exotic particles are related to dark matter. Smoot’s comment on how tiny particles dictate what the Universe looks like was misinterpreted by all of the attendees including Smoot himself because no one considered the tiny particles to be submicron cosmic dust. Hubble’s redshift by the Doppler Effect held for 80 years needs to be set aside and superseded by QED induced redshift in cosmic dust, an unpleasant, but necessary action by astronomers if cosmology is to move forward.

High thermal conductivity of amorphous silicon – a quantum mechanics size effect?

High thermal conductivity of 80 micron thick a-Si film

Higher conductivity of amorphous silicon (a-Si) found in 80 micron samples compared to submicron samples thought to be depend on the mean free path of phonons is negated by the size effect of quantum mechanics

Background
Thermoreflectance (TDTR) measurements at room temperature for an 80 micron a-Si sample show at more than a 2-fold increase in thermal conductivity compared to submicron samples having thicknesses of 200 nm and between 1 and 2 microns. See Yang et al., “Anomalously high thermal conductivity of amorphous Si deposited by hot wire chemical vapor deposition,” March, 2010. http://users.mrl.uiuc.edu/cahill/asi_v3.pdf On this basis, it was concluded: (1) phonons with a mean free path of ~ 100 nm make a sizeable contribution to conductivity, (2) size in terms of the sample thickness was not expected to make a significant difference in measured conductivity for the 80 micron and 200 nm samples, and (3) current theoretical methods cannot account for the nearly 40 percent contribution from phonons with a mean free path between 100 to 600 nm as inferred from the TDTR measurements. See http://cdac.ciw.edu/component/content/250.html?task=view

Problem and Hypothesis
Heat conduction based on atomic vibrations by Debye’s phonons has served well at the macroscale, but not in comparisons with experiment at the nanoscale. Like the difficulty in explaining the higher conductivity in the 80 micron samples, agreement if any is found by hand waving” the phonon wavelength that agrees with experiment, e.g., minimum thermal conductivity where the Boltzmann equation is used with the mean free path set to a “lattice” constant, to a “fracton” model in which heat is transported by anharmonically assisted hopping of localized vibrations, to diffusion-like conduction, with heat transported mainly by extended states but which do not have “good” wavelengths. Ibid.  The question may be asked:

Are phonons the mechanism of heat transfer at the nanoscale?

Alternatively, is the size effect of quantum mechanics at play in extending the validity of classical heat transfer at the macroscale to the nanoscale. But there are more basic questions:

At the nanoscale, does heat conduction even exist?

Indeed, if there is no conduction, calculations of thermal conductivity based on phonons are meaningless thereby avoiding the “hand-waving” of wavelengths to explain experiments. But if so, the remaining question is:

What is the heat transfer mechanism at the nanoscale?

If a heat transfer mechanism at the nanoscale is hypothesized that promptly conserves absorbed heat without any need to include conductive heat flow, the difficulties in explaining experiments by phonon wavelengths would be avoided. Bulk conductivity could then be assumed at the nanoscale even though there is no heat flow. Indeed, if such a heat transfer mechanism can be shown to exist, then all the above questions are answered.

QED induced EM radiation
One such heat transfer mechanism at the nanoscale that avoids phonons is the theory of QED induced EM radiation. QED stands for quantum electrodynamics and EM for electromagnetic. By this theory, absorbed EM is promptly conserved by the QED induced creation of photons within the nanostructure that then are emitted to the surroundings as non-thermal QED radiation at UV or higher levels. What makes this possible is that quantum mechanics requires the specific heat of atoms at the nanoscale to vanish. See  http://www.nanoqed.org/ at “Nanofluids and Thin Films”, 2009.

Vanishing specific heat may be understood from the fact the thermal energy of the atom given by the Einstein-Hopf relation depends on wavelength under the constraint that only submicron (< 1 micron) wavelengths are allowed to “fit inside” nanostructures. But submicron wavelengths are only populated at temperatures greater than about 6000 K. At ambient temperature, therefore, the heat capacity of nanostructures is “frozen out”, and so absorbed EM energy cannot be conserved by an increase in temperature. Conservation may only proceed by the QED induced frequency up-conversion of absorbed EM energy to the fundamental resonance of the nanostructure. Heat conduction is negated because the prompt conservation of absorbed EM energy by QED emission is far faster than the time it takes for the phonons to respond. Ibid, at “QED induced heat transfer”, 2010.  

Discussion
The prompt conservation of absorbed EM energy by QED emission means conduction does not occur at the nanoscale, and therefore phonon explanations of reduced conductivity in thin films are meaningless. Indeed, bulk conductivity at the macroscale may be assumed valid at the nanoscale. Ibid

The thermal conductivity by TDTR measurements of submicron samples is only apparent. Conductivity appears reduced from that of bulk only because QED emission was excluded in the heat balances. If included, there is no conduction and bulk conductivity is still valid. What this means is that the a priori assumption may be made that absorbed EM energy of any form by a nanostructure is promptly emitted as QED radiation at UV or higher levels Hence, Molecular Dynamcis (MD) simulations to determine the response of the nanostructure to the absorbed EM energy are no longer necessary.The only relevant MD simulation might be the interaction of the QED emission with the surroundings.Ibid

Conclusions

1. The conclusion that size in terms of the sample thickness is not expected to make a significant difference in measured conductivity for the 80 micron and 200 nm samples is negated by the size effect of quantum mechanics.

2. Conductivity appears reduced in submicron samples because QED induced radiation was excluded in the heat balances. If included, there is no conduction, and therefore the sample may be considered to have bulk conductivity under the condition of no heat flow. In fact, both submicron and 80 micron samples have bulk thermal conductivity.

3. Conclusions that phonons with a mean free path of ~ 100 nm make a sizeable contribution to conductivity not only contradict the fact current theoretical methods based on phonons cannot explain the higher conductivity of the 80 micron sample. In fact, both are meaningless because there is no conductive heat flow at the nanoscale.

4. TDTR measurements are likely caused by QED induced photons and have nothing to do with phonons.

5. The response of nanostructures to absorbed EM energy need not be determined by MD simulations; the only relevant MD simulation might be the interaction of the QED emission with the surroundings.

Cancer is caused by disorganization of epithelial tissue and not by DNA mutations

Mutations in the genomes of the tumor cell long thought to cause cancer is negated by QED induced ionizing radiation produced   as the MMP-3 enzyme disorganizes the basement membrane of epithelial tissues

Background Epithelial tissue forming the outer layers of the skin protect exterior surface of the body, but also provide protection for hollow organs and glands including the breast, prostate, colon, and lung from body fluids.  Epithelial tissue is organized by a submicron thick < 100 nm basement membrane (BM) that provides the structural scaffold template for the extracellular matrix (ECM). Breakdown of the BM is associated with the spread of tumors, e.g., loss of integrity of the BM in mice is known to cause tumors. See http://www.lbl.gov/Science-Articles/Archive/LSD-cancer-f … 

Loss of integrity in the ECM is triggered by enzymes called matrix metalloproteinases (MMPs). Breast tumors in particular are known to have an increased amount of MMPs. Indeed, MMPs induce the epithelial-mesenchymal transition (EMT) that disorganize the BM and allows the dissociated epithelial tissue to move through the body. In breast cancer, EMT allows tumor cells more mobility to penetrate barriers like the walls of lymph and blood vessels, facilitating metastasis, e.g., the MMP-3 enzyme causes normal cells to produce a protein called Rac1b that is found only in cancers. Currently, Rac1b is thought to stimulate the production of highly reactive oxygen species (ROS) molecules leading to cancer by damaging the DNA. Ibid

Problem and Hypothesis
The problem with epithelial tissue as the source of DNA damage is that the protein Rac1b lacks a mechanism to produce energy of at least 5 eV from which the ROS of peroxide and hydroxyl radicals form to damage the DNA. The ROS can only be produced by ionizing radiation > 5 eV at ultraviolet (UV) levels or beyond. 

But what is the mechanism of ionizing radiation?

Certainly, there are no UV lasers in body fluids. The hypothesis may therefore be made that epithelial tissue during disorganization somehow emits low level ionizing radiation.

Emission of Ionizing Radiation by Submicron Entities
Cancer research is only beginning to recognize the remarkable fact that submicron entities present in body fluids emit low-level ionizing radiation. Over the past few decades, this fact has been supported by experimental evidence that shows submicron entities comprising nanoparticles (NPs) of natural and man-made materials cause DNA damage. Remarkably, the NPs alone – without lasers – somehow induce DNA damage in body fluids. See http://www.nanoqed.org/ at “DNA damage by NPs”, 2009 and  “DNA damage by signaling,” 2010.

QED induced EM radiation
Recently, the theory of QED induced EM radiation was proposed to explain the remarkable fact that NPs alone cause DNA damage. QED stands for quantum electrodynamics and EM for electromagnetic. Ibid. By this theory, quantum mechanics forbids atoms in submicron NPs to have specific heat. This may be understood from the fact the thermal energy of the atom given by the Einstein-Hopf relation depends on wavelength under the constraint that only wavelengths < 1 micron are allowed to “fit inside” submicron entities. But quantum mechanics only allows submicron wavelengths to be populated at temperatures greater than about 6000 K. At ambient temperature, therefore, the heat capacity of submicron entities is “frozen out”, and so NPs cannot conserve absorbed EM energy by an increase in temperature. Absent UV lasers, NPs in body fluids absorb EM energy from colliding water molecules. Conservation then proceeds by the QED induced frequency up-conversion of absorbed EM collision energy to the fundamental resonance of the NP.  Typically, ionizing QED radiation is emitted at UV or higher levels thereby explaining how NPs alone produce the ROS that damages DNA. Specifically, ionizing radiation > 5 eV necessary for forming ROS is produced for NPs < 100 nm. Ibid

Epithelial cell induced DNA damage
Epithelial tissue like NPs induce DNA damage provided submicron entities are produced upon disorganization by MMPs. QED induced radiation is emitted if the size of the biological entity is < 100 nm and has a refractive index greater than the surroundings. For biological materials, the index is about 1.5 > 1.33 for water. But epithelial cells themselves are not submicron and at 10-100 microns in the disorganized state do not emit ionizing radiation. However, ionizing radiation is emitted from the < 100 nm BM upon disorganization of epithelial tissue by MMPs.

By the theory of QED induced radiations, the disorganization of the BM by MMP-3 produces the ionizing radiation that forms the ROS that in turn damage the DNA. Current thought that the Rac1b protein itself damages the DNA is therefore placed in question. Indeed, the Rac1b protein is a cancer marker only because it forms in the process of ionizing radiation be produced by the disorganized BM. Nevertheless, Rac1b as a small protein is a submicron entity that once in the disorganized state like the BM also produces ionizing radiations that may damage surrounding DNA. See Press Release http://www.prlog.org/10793056-cancer-is-caused-by-disorganization-of-epithelial-tissue-and-not-by-dna-mutations.html

Conclusions

1. During disorganization by MMP-3, the BM emits QED induced ionizing radiation forming ROS that damage the DNA and produce the Rac1b protein found in most cancers.

2. Contrarily, the ROS are not induced by Rac1b to stimulate the development of cancer by directly affecting genomic DNA. Rather, the ROS are formed in a side reaction from the QED induced radiation emitted from the disorganized BM. Nevertheless, the Rac1b protein as a submicron entity is the product of the ROS and may also damage nearby DNA.

3. Loss of epithelial tissue organization produces QED induced EM radiation that damages the DNA before mutations occur in the genome of the tumor cell by other factors.

4. Oncogenes are activated by QED induced radiation from changes in the BM structure by MMPs.

5. UV absorptive drugs may be used to reduce QED induced radiation and attendant DNA damage from epithelial tissue disorganization by MMP-3.

The toxicity of colloidal silver and risk of cancer

Background

Scientific American in 2008 published an article entitled: Do Nanoparticles in Food Pose a Health Risk? The article reports the widespread use of nanoparticles (NPs) in food or food-related products that do not bear the warning that they may pose a health risk. The FDA does not require NPs to be proved safe, but rather requires the foods having NPs to not be harmful. In 2006, the EPA began to regulate nanosilver as a pesticide and as a result companies using nanosilver as an antimicrobial agent are required to register them as pesticides. Friends of the Earth, an environmental group, insist that reporting of nanosilver use by companies should be mandatory, given the potential risks and has suggested the definition of what constitutes a health risk to include NPs < 300 nm in diameter. But Andrew Maynard of the Woodrow Wilson International Center for Scholars notes it is the effect rather than the size that is significant. See http://www.scientificamerican.com/article.cfm?id=do-nanoparticles-in-food-pose-health-risk

Toxicity by Surface Area and Size

Currently, the mechanism by which NPs pose a health risk is not well understood. NP size controls the surface area and therefore the effectiveness of colloidal silver. NPs are thought to be more reactive than larger particles of the same substance, because they have more surface area and therefore have more opportunity to interact with other substances in their surroundings, i.e., a material that is otherwise harmless at the macroscale is likely to be toxic if it is processed to the nanoscale as NPs. See http://www.scientificamerican.com/article.cfm?id=will-nano-particles-present-big-health-problems The problem with quantifying toxicity by NP surface area and size is that both lack a mechanism to produce EM energy of at least 5 eV to form the reactive oxidative species (ROS) necessary to act as bactericidal agents. EM stands for electromagnetic. Similarly, the significance of “effect rather the size” in toxicity suggested by the Wilson Center lacks a mechanism to produce the ROS.

QED Induced EM Radiation Toxicity

More recently, the toxicity mechanism of NPs capable of producing ROS was proposed to find origin in quantum mechanics. Toxicity is found to almost be independent of the material, although silver has received the most attention because of its use as a bactericide in baby food. By this theory, atoms in NPs lack specific heat because at ambient temperature the heat capacity in submicron NPs resides at wavelengths < 1 micron that may only be populated at temperatures greater than about 6000 K. At ambient temperature, the heat capacity is therefore “frozen out”, and so NPs lack the heat capacity to conserve absorbed EM energy from colliding water molecules in body fluids by an increase in temperature. Conservation may only proceed by the QED induced frequency up-conversion of absorbed EM energy to the EM resonance of the NP. QED stands for quantum electrodynamics. Typically, ionizing QED radiation is emitted at UV or higher levels thereby producing the ROS that damage DNA from which cancer may develop. NPs < 100 nm are required to produce ROS through ionizing radiation. In contrast, NPs > 100 nm emit non-ionizing QED radiation in the VIS and IR. See http://www.nanoqed.org at “DNA damage by NPs”, 2010.

Colloidal Silver

Colloidal silver comprising silver NPs in solution is related to the controversy over the risks of silver NPs in food products. Colloidal silver has been used for fighting infections for thousands of years. But for the last 40 years, silver colloids have been proven to be cancer-causing agents. Indeed, silver is listed in the 1979 Registry of Toxic Effects as causing cancer in animals. Silver finds antibiotic action from the fact that it is a non-selective toxic biocide. See e.g., http://www.cqs.com/silver.htm  Regardless, fine silver NPs provide greater effectiveness than coarse NPs because toxicity is predicated on exposing the infected region to the largest possible surface area. See http://www.silver-colloids.com/Reports/reports.html#CompTable

 Safe Colloidal Silver?

Currently, comments to the Scientific American article stated if the widely touted “natural antibiotic” usage of colloidal silver is a potentially dangerous thing, then: Are there any safe colloidal silvers? Or Are the silver components in such preparations larger than problematic?  

Answers to these questions depend on effectiveness. Colloidal silver is perfectly safe if not taken at all, but is not effective if other antibiotic agents are not used. Least effective are silver colloids with coarse NPs > 100 nm because the QED radiation emitted by the NPs in the VIS and IR is non-ionizing. Most effective are fine NPs < 100 nm, but come at the risk of damaging the DNA by UV or higher ionizing radiation that can lead to cancer.

 Moreover, coarse NPs accompanied by fine NPs actually enhance the DNA damage above that by fine NPs alone. Hence, manufacturers would have to guarantee that all NPs in the colloidal silver are > 100 nm to avoid ionizing radiation. Manufacturers of colloidal silver would be required to label the minimum size of NPs in their products to allow the customer himself to weigh the risk of DNA damage to antibiotic effectiveness.  

 Conclusions

1. NPs by emitting QED induced ionizing radiation are significant antibiotic agents, but pose a health risk by collateral damage to DNA the consequence of which may lead to cancer. DNA damage must always be considered in the use of NPs as antibiotics.

2. All NP materials produce about the same QED radiation because their refractive indices are similar. Therefore, only the NP size distinguishes whether ionizing or non-ionizing is emitted. Labeling of the minimum size of NPs in a product allows the customer to weigh the respective advantages and disadvantages.

3. Colloidal silver with NPs < 100 nm produce ionizing QED radiation at UV or higher levels that damage the DNA and can lead to cancer even though being used for thousands of years.

4. Safe colloidal silver may be found at minimum effectiveness. If manufacturer control all NPs > 100 nm, non-ionizing QED radiation is then emitted.  Controlling NPs > 300 nm can only err on the safe side.

5. The safest way of avoiding future cancers caused by DNA damage is to ban all NPs < 300 nm from food products, especially baby food.

Thermophones Produce Sound Without Vibration

Background
In 1914, Lord Rayleigh communicated the description of the thermophone by de Lange to the Royal Society. But as early as 1880, Preece produced sound by passing current through micron sized platinum wires affixed to a diaphragm. Around 1800, the Russian engineer Gwozda produced sound by heating a straight wire without a diaphragm. Historically, the theory of thermophones is based on the production of sound from a thin platinum film published by Arnold and Crandall in 1917.
    Recently, Xiao et al. showed sound was produced by passing an alternating current through thin carbon nanotube (CNT) films. The high sound level at low electrical power for the CNT films were thought more efficient than platinum that required more power for the same sound level. However, the experimental frequency response did not agree with the long standing thermophone theory of Arnold and Crandall. Modifications were made to the theory including the conductive heat loss from the film to the air based on classical heat transfer methodology. See “Thermophones,” at link “Nano Letters Paper”, of www.nanoqed.org , 2009. Xiao et al. claim agreement of the modified theory and experimental data. However, the claimed agreement could not be confirmed by this author because of the experimental fitting necessary to determine the conductive heat loss.

Problems with Classical Heat Transfer Theory
Classical heat transfer theory predicts that sound levels in thermophones are produced by changes in thin film temperature caused by Joule heat produced from passing electrical current though the films. However, this cannot be correct. Classically, temperatures should increase in CNT thin films in proportion to the electrical power, but the CNT films produced high sound levels at lower power than in platinum films at high power levels.
   What this means is that temperature changes in thin films have nothing to do with the sound produced in thermophones. Alternatively, classical heat transfer theory that predicts sound is produced by temperature changes in thin films is not applicable to thermophones.      

Heat Transfer under Quantum Mechanics Restrictions
Quantum mechanics (QM) methodology differs from classical heat transfer in that the specific heat of the atom is required to vanish under electromagnetic (EM) confinement. Ibid, “Thermophones,” at link “Paper”. In heat transfer restricted by QM, Joule heat absorbed in the thin film cannot be conserved by an increase in temperature. Classical theory differs in that specific heat of materials in macroscopic structures is assumed to remain the same at the nanoscale.
   Regardless, EM energy is still required to be conserved at nanoscale. Lacking specific heat, thin films conserve Joule heat by the theory of QED induced EM radiation. QED stands for quantum electrodynamics. By this theory, the low frequency Joule heat is conserved by frequency up-conversion to the EM confinement frequency of the film. Like creating photons of wavelength L by supplying EM energy to a QM box having sides separated by L/2, the Joule heat in thin films creates photons having wavelength L = 2nd, where d is the thickness and n is the refractive index of the film. There is no increase in temperature of the thin film.
   The QED photons are only confined briefly because the EM confinement is quasi-bound, and therefore the thin film promptly leaks EM radiation at the confinement wavelength. Typical CNT thin films in thermophones have thickness d > 0.125 microns, and therefore the EM confinement produce radiation in the ultraviolet (UV) and visible (VIS). Unlike thermal radiation in classical heat transfer theory that requires high temperatures, the QED induced emission is non-thermal and occurs at ambient film temperatures.  

Sound from Thermophones by QM
Sound from thermophones requires pressure changes in the surrounding air. The QED induced emission in the UV-VIS is therefore required to be absorbed by air to increase its temperature and produce the pressure changes necessary for sound propagation. But nitrogen in air is transparent in the UV-VIS and cannot produce sound. Only oxygen has an absorption cross-section close to that necessary to produce sound. The Joule heating necessary to produce sound by oxygen absorption is found to be a very small fraction – around 10^-6 of the 1-4.5 watts supplied.
   Almost all of the supplied Joule heat is lost to the solid walls of the thermophone enclosure. To improve thermophone efficiency, the gas volume between the thermophone and microphone should be sealed and filled with a UV-VIS absorptive gas.

Conclusions
   1. By quatum mechanics, sound is produced by QED emission without vibration. Classical heat transfer is unable to explain sound without vibration.

   2. Classical heat transfer that includes finite specific heat in thin films is not applicable to thermophones. The Joule heat cannot be conserved by temperature changes of the thin film.

   3. Heat transfer by QED induced radiation as based on zero specific heat as required by QM should be used for the analysis of thermophone performance. The emission of UV-VIS radiation that conserves the Joule heat is required to be absorbed by the air surroundings to produce sound.  

 4. But the absorption of UV-VIS in air is very low.  Indeed, almost all of the Joule heat does not produce sound because of absorption by the walls of the enclosure. To improve sound levels, the space between the thermophone and microphone should be sealed and filled with a UV-VIS absorptive gas.

Materials At The Nanoscale Have Zero Specific Heat

 Background
Specific heat is thought to be an intensive thermophysical property independent of the amount of the substance. Given the amount of the substance in a body is proportional to its volume, specific heat should therefore be independent of whether the body dimensions are macroscopic or nanoscopic. In contrast, specific heat that depends on the amount of the substance is an extensive property dependent on the dimensions of the body.  See http://en.wikipedia.org/wiki/Specific_heat_capacity

 Classical Specific Heat at the Nanoscale  Currently, specific heat at the nanoscale is considered an intensive property having the same value as for macroscopic bodies. The Debye and Einstein macroscopic theories of specific heat including modifications thereof by Raman are generally assumed in simulating heat transfer in nanostructures. See Thumbnail of “Macroscopic Specific Heat at the Nanoscale?”. What this means is the classical oscillators of statistical mechanics from macroscopic bodies all having the same kT energy are used to model specific heat at the nanoscale. See Ibid.

Specific Heat by Quantum Mechanics Contrarily, quantum mechanics (QM) embodied in the Einstein-Hopf relation for the harmonic oscillator shows the QM states do not have the same kT energy at the nanoscale. At ambient temperature, the average Planck energy of QM states is kT only at thermal wavelengths greater than about 50 microns while at shorter wavelengths is less than kT and vanishes for nanostructures at submicron wavelengths.  See Paper and Presentation at “Zero Specific Heat”, http://www.nanoqed.org , 2010.

Since the Planck energy at a given wavelength is the amount of thermal energy that can be stored in the QM oscillator, and since the only thermal wavelengths that can fit into nanostructures are submicron, QM requires zero specific heat capacity at the nanoscale, the consequence of which is absorbed heat cannot be conserved in nanostructures by an increase in temperature. Conservation may only proceed by the QED induced frequency up-conversion of absorbed heat to non-thermal EM radiation at the fundamental EM confinement frequency of the nanostructure, typically in the UV and beyond. The EM confinement is quasi-bound allowing leakage of QED induced radiation from the nanostructure to be absorbed in the macroscopic surroundings. See Ibid.

But QED emission in the UV and beyond from nanostructures is not readily observed – even by standard photomultipliers because of the UV cut-off, and therefore heat balances of nanostructures do not include QED emissions as heat losses. Hence, thermal conductivity is inferred to be reduced from that of the bulk to be consistent with the measured temperature difference across the body, e.g., as in thin films. If QED emissions are included in heat losses, the bulk conductivity need not be reduced for consistency with temperature differences thereby precluding any modification of Fourier’s theory of heat conduction by the Boltzmann transport equation (BTE). See Ibid.  

 Molecular Dynamics and Periodic Boundaries  Molecular Dynamics (MD) describes the classical solution of atomic motion based on Newton’s equations. To determine bulk transport properties, there are no QM restrictions on kT energy of atoms, i.e., atoms are assumed to have kT energy because the MD solution for the bulk is obtained by imposing periodic boundary conditions on the computational box. Historically, Monte Carlo (MC) preceded MD simulations, however. MC simulations of spherical particles in a submicron computational square with periodic boundaries were used to determine the 2D virial coefficients for the PVT equation of state. See Metropolis et al. Ibid.For a discrete nanostructure, periodic boundaries do not apply, and therefore the atoms in the nanostructure are subject to QM restrictions of zero kT energy.

Heat transfer of discrete nanostructures which are unambiguously not periodic is generally simulated by MD on the invalid assumption the atoms have kT energy. See e.g., http://pubs.acs.org/doi/full/10.1021/ct7002594  Extending specific heat from macroscopic samples to the nanoscale is just as invalid as extending the Dulong-Petit law for specific heat at ambient temperature to low temperatures about 200 years ago. Nevertheless, MD simulations of nanostructures today are proudly displayed in the belief they provide precise atomistic explanations of conduction heat transfer when in fact they are not valid because the simulations are performed on the assumption the atoms have finite kT energy. See Ibid, and http://www.scienceblog.com/cms/blog/8209-quantum-mechanics-questions-molecular-dynamics-submicron-structures-25639.html

Conclusions

1. QM requires zero specific heat capacity at the nanoscale be specified as a new thermophysical property of all materials.

2. The classification of specific heat as an intensive thermophysical property of a body should be changed to an extensive property depending on the dimensions of the body.

3. Nanoscale heat transfer based on the assumption of macroscopic specific heat is likely to produce unphysical results, e.g., reduced thermal conductivity in thin films.

4.  There is no need for the BTE to determine the thermal conductivity in thin films as bulk conductivity may be assumed without any loss in accuracy.

5. Macroscopic Debye and Einstein theories should be revised to include zero specific heat at the nanoscale.

6. Lacking specific heat at the nanoscale, absorbed EM energy is not conserved by an increase in temperature, but rather by the emission of non-thermal QED induced EM radiation.

7. MD and MC simulations of bulk thermal conductivity based on full kT energy of atoms in submicron computational boxes under periodic boundary conditions are consistent with QM.

8. Zero specific heat is required for atoms in MD and MC simulations of discrete nanostructures without periodic constraints.

9. Absorbed EM energy in discrete nanostructures may be a priori assumed to be emitted as high frequency EM radiation that is absorbed in the macroscopic surroundings, thereby obviating any need to perform MD and MC simulations of the nanostructure itself.

Redshift by Cosmic Dust trumps Hubble and Tired Light Theories

Hubble and Tired Light Theories
In 1929, Hubble formulated a law that the velocity of a receding galaxy is proportional to its distance to the Earth. The Hubble relation held in all directions suggesting to de Sitter that the Universe was consistent with the expansive metric of Einsteins theory of general relativity. However, others thought the Hubble redshift was caused by mechanisms without Universe expansion. Zwicky proposed that galaxy photons redshift because they lose energy as they scatter upon collision with cosmic dust particles (DPs) before entering the Earth, a redshift theory called Tired Light. See www.en.wikipedia.org/wiki/Tired_light. Recently, Ashmore extended Tired Light to loss of energy in galaxy photons upon collisions with electrons. See www.lyndonashmore.com/.

Objections to Tired Light theories are generally based on the argument that scattered light should blur the galaxy image, and therefore are dismissed because the images are clear and not blurred. See www.astro.ucla.edu/~wright/tiredlit.htm. However, claims that Tired Light theories do not explain all the predictions of Big Bang cosmology should be set aside because there is no mandate in science that any theory must totally stand alone, e.g., the anisotropy of the cosmic microwave background (CMB) in the current epoch may be simply explained by the static Universe in the current epoch having nearly uniform temperature everywhere of about 2.726K.

Alternative QED Induced Light Theory
An alternative to the Hubble and Tired Light theories is the theory of QED induced redshift caused by the absorption of galaxy light in DPs. QED stands for quantum electrodynamics. See http://www.nanoqed.org/ at “Dark Energy and Cosmic Dust” and “Reddening and Redshift”, 2009. QED theory asserts the redshift Z is spontaneous upon the absorption of light. Here Z = (Lo – L)/L, where L is the wavelength of galaxy light and Lo is the wavelength of the light emitted from the DP.

QED induced redshift may be understood by treating the absorbed galaxy photon as electromagnetic (EM) energy confined within the DP geometry. Recall from quantum mechanics (QM) that photons of wavelength Lo are created by supplying EM energy to a QM box with walls separated by Lo/2. For a spherical DP of diameter D, the QED photons are produced at a wavelength Lo = 2Dn, where n is the index of refraction which for the typical DP of amorphous silicate has n = 1.45. Hence, DPs having D = 0.25 microns redshift the Lyman-alpha line at 0.121 microns to a red line at 0.725 microns with Z ~ 5. If the QED induced redshift in DPs at Z = 5 is erroneously interpreted by the Hubble law, the galaxy recession velocity is 95 % of the speed of light when in fact the Universe is not expandingl.

Tolman Test and Supernovae Spectra Aging
Shortly after the Hubble discovery, Tolman devised a test to distinguish between a static and expanding Universe. See www.en.wikipedia.org/wiki/Tolman_surface_brightness_test. In a static Universe, the light intensity of an object drops inversely with the square of its distance from the observer, but the apparent area of the object also drops inversely with the square of the distance, so the brightness given as the intensity per unit area of the object is independent of the distance. However, if the Universe is expanding, astronomers claim the brightness is reduced by the fourth power of (1+Z). In 2001, Lubin and Sandage showed the redshift gave a reduction in brightness by the cube of (1+Z). Although the brightness is not reduced by the fourth power of (1+Z), the conclusion was the brightness test is consistent with the reality of Universe expansion.

However, there is a problem with the Tolman test because the brightness B of an object in the static Universe is not assumed reduced by absorption in DPs. By QED theory, a single interaction with a DP emits light at wavelength Lo = (1+Z)L. Therefore the brightness Bo at the observer is Bo = hc/Lo = hc/L(1+Z) = B/(1+Z), or the object brightness is reduced by (1+Z), but not by the cube of (1+Z) as measured. Closer agreement is found for multiple interactions, e.g., for N interactions, B drops inversely with the product (1+Z1)(1+Z2)…(1+ZN), where ZK is the redshift for interaction K.

The Tolman test aside, the aging of Supernovae spectra is found to drop inversely with (1+Z) at the observer. See Blondin et al. at www.astro.ucla.edu/~wright/tiredlit.htm. For spectra defined by brightness/unit area, Bo = B divided by the respective wavelength. Equivalence is found by Bo/Lo = B/L(1+Z). Hence, QED theory for the spectra at the Supernovae is consistent with the measured spectra showing an inverse drop by (1+Z).

Time Dilation of Supernova Light Curves
Tired Light theories are claimed unable to explain the observed time dilation of Supernova light curves at high Z redshift, i.e., nearby supernovae that take 20 days to decay will take 40 days to decay when observed at redshift Z =1 See e.g., www.astro.ucla.edu/~wright/tiredlit.htm. However, redshift in the QED theory differs from Tired Light in that it is proportional to the number of DPs in the light path that in turn is proportional to the total dust mass emitted in the Supernova explosion. Time dilation in observing Supernova explosions is nothing more thermal cooling of the dust mass, i.e, at high Z the Supernovae having larger dust mass takes a longer time to cool than at low Z. Hence, QED redshift theory based on DPs is consistent with Supernova light curves.

ISM Lights
A more compelling argument that DPs are the source of redshift of galaxy light is found on a far larger scale everywhere by the visible (VIS) light observed throughout the Universe. Ultraviolet (UV) radiation is known to permeate the Universe including the interstellar medium (ISM). Indeed, astronomers explain the infrared (IR) spectra measured in the ISM by the thermal emission following the increase in temperature in DPs upon the absorption of single UV photons. But this is unlikely, because an increase in DP temperature is negated by the QM restriction that the specific heat of DPs vanishes. Also unlikely is VIS light produced in DPs by photoluminescence (PL) because a single UV photon is more likely to be absorbed anywhere in the DP than at the PL color center.

Without thermal emission and PL, the IR and VIS spectra can only be produced by QED induced redshift upon the absorption of single UV photons in DPs. VIS colors in the ISM require DPs having D < 0.5 microns while IR spectra depend on larger DPs found in molecular clouds. Similar to the Hubble redshift of galaxy light, the vivid ISM colors observed are produced without Universe expansion, e.g., single UV photons at 0.15 microns absorbed in a D = 0.125 to 0.25 micron silicate DPs, blue to red light corresponding to wavelengths from 0.362 to 0.725 microns is produced at redshift Z from 1.41 to 3.83. ISM light does not depend Universe expansion.

Conclusions

1. The measured Hubble redshift Z is caused by DPs and has nothing to do with an expanding Universe. DPs make moot the existence of dark energy because it is no longer necessary in a static Universe.

2. Tired Light theories based on scattering are likely to produce blurring of the object image. QED theory based on absorption and not scattering do not produce blurring.

3. QED theory does not agree with brightness reduction to the cube of (1+Z) in the Tolman test, but is found in agreement with the (1+Z) reduction in aged Supernovae spectra.

4. QED theory based on redshift of DPs is consistent with the observed time dilation of Supernova light curves.

5. The vivid VIS color variations in the ISM are caused by variations in DP diameter D and far less likely by PL from the chemical composition of the DPs. Larger DPs necessary to produce the IR spectra are found in molecular clouds.

Redshift in cosmic dust resolves the galaxy rotation problem without dark matter and MOND

Background  The Tully-Fisher relation based on Newtonian mechanics requires the rotation velocity of spiral galaxies to vary inversely with the square root of the distance from the galactic center. See http://www.scholarpedia.org/article/Tully-Fisher_relation  However, observations of galaxy rotation velocities obtained with the Doppler shift show the velocity is nearly constant with distance suggesting the presence of a substantial amount of dark matter in a halo surrounding the galactic center. See http://en.wikipedia.org/wiki/Galaxy_rotation_curve

Dark matter halos are an important feature of the Lambda Cold Dark Matter (LCDM) model of the Universe, but dark matter lacks experimental verification, and remains an unsolved problem in physics. The question may be asked:

Is dark matter responsible for the difference between galaxy rotation velocities given by Newtonian mechanics and those observed, or is there another explanation?  

MOND
MOND asserts the galaxy rotation problem may be resolved by assuming the physics of gravity changes at the large scale allowing rotation velocities in galaxies to remain constant with distance from the galactic center instead of decreasing as required by Newtonian mechanics. But like dark matter, MOND lacks experimental verification. Moreover, MOND requires motions of galaxies around a galactic center, and therefore fails to explain the collapse of cluster galaxies having motion emanating from  other points. See Clowe, et al. ApJ Letters, 648, L109, 2006 in http://en.wikipedia.org/wiki/Modified_Newtonian_dynamics. However, the failure of MOND to explain collapsing galaxies is not proof dark matter exists, as other explanations are possible.

Redshift in Cosmic Dust
Redshift in cosmic dust claims the galaxy rotation problem is caused by Doppler shift and is resolved by replacing the latter with a theory called QED induced radiation. See “Dark Energy and Cosmic Dust” at http://www.nanoqed.org  By this theory, the validity of the Doppler shift as the measure of velocities in the Universe is held in question by the redshift that accompanies the absorption of light in submicron dust particles (DPs). It is important to note that the redshift upon the absorption of light in DPs differs from scattering in that the latter does not redshift light. The impact of DPs on velocity measurements in cosmology is significant in that the very first redshift measurements by Hubble giving recession velocities of galaxies are refuted leaving the notion of an expanding Universe without experimental verification. Astronomers are therefore required to find other ways of proving Universe expansion or abandon the cosmology of the expanding Universe including the Big Bang. No matter how unpleasant these options may be, the fact remains the Universe is only observed by light, and therefore the significance of absorption of galactic light by cosmic dust may by default require astronomers to return to the cosmolog of a static Universe once proposed by Einstein.

Indeed, the redshift measurements by Hubble and interpreted by the Doppler shift were most likely caused by QED induced redshift and have nothing to do with the recession velocities of galaxies. In fact, cosmological events that produce large amounts of debris have large redshifts because of the proportionality of submciron DPs that form to the debris produced. In this regard, QED induced redshift of galaxy light in DPs observed by Hubble may be almost insignificant compared to the large quantities of  DPs produced in Supernovae Type 1a explosions. See http://www.scienceblog.com/cms/blog/8209-redshift-cosmic-dust-trumps-hubble-and-tired-light-theories-26678.html The interpretation of Supernova light curves and respective time dilation therefore cannot proceed without considering the absorption of light in DPs.

Cosmic Dust and Galaxy Rotation Curves
Similar to light from receding galaxies and Supernovae explosions, astronomers use the Doppler shift of light from different parts of a spiral galaxy to determine its rotation velocities. In the plane of rotation, the galaxy is described by spiral arms of stars emanating from the galactic center while the edge view shows a bulge at the center of a thin disk.  In edge view, galaxy rotation consists of half of the disk moving away from us leaving a trailing cloud of DPs in the light path to us. However, there are far less DPs present in the half moving toward us. Our edge view of a rotating galaxy is therefore altered by an asymmetric cloud of DPs.

Light from the galaxy passing through the asymmetric cloud of DPs undergoes more QED induced redshift on the half moving away than that moving toward us. Away from the galaxy, the DPs in the light path to us induce the same QED redshift for both halves of the disk, but compared to the cloud of trailing DPs may be neglected. The asymmetry in QED induced redshift if interpreted as a Doppler shift suggests the galaxy is rotating faster than it actually is. Since the trailing cloud of DPs is always present at any distance from the galactic center, the galaxy rotation appears to be flat with distance. By QED induced redshift, the galaxy rotation problem is resolved by treating the Doppler shift as anomaly of cosmic dust having nothing to do with rotation velocities, thereby allowing the dynamics of spiral galaxies to be governed solely by Newtonian mechanics.

Conclusions
1.  Cosmic dust refutes velocities determined by Doppler shift leaving Newtonian mechanics alone to govern the Tully-Fisher relation for spiral galaxy rotation curves. Rotation velocities inferred from Doppler shifts should be not used in explaining galaxy dynamics, and instead treated as anomolies of cosmic dust . There is no need for dark matter and MOND to explain the galaxy rotation problem.
2. The failure of the LCDM model to explain galaxy rotation curves began with Hubble who proposed the observed redshift of galaxies be interpreted as recession velocities given by the Doppler shift instead of by absorption in cosmic dust.
3. Astronomers may want to consider abandoning the LCDM model in favor of a static Universe once proposed Einstein.

Olbers paradox is explained by cosmic dust instead of the Big Bang

Background

The German astronomer Heinrich Olbers in 1823 is credited with the paradoxical observation that the night sky is dark, but in a static infinite universe the night sky should be bright. Indeed, Olbers paradox is often cited as evidence for the Big Bang theory. http://en.wikipedia.org/wiki/Olbers’_paradox

In a static infinite Universe, the observer would see a nearby galaxy in one region of the sky and another galaxy in a more distant region. Although the nearer galaxy would appear brighter, there would be more galaxies in the more distant region of the sky. Therefore, the total light from the nearer region of the sky would be the same as that from the more distant region. No matter where the observer looks in the sky, the total light coming from every line-of-sight would be the same. Olbers paradox concludes the night sky should be bright and not dark if the Universe is infinite.    http://www.astro.psu.edu/users/caryl/a10/lec15_2d.html

Astronomers explain Olbers paradox as an artifact of a finite and expanding Universe In the Big Bang. By Hubble’s law, distant galaxies in an expanding Universe are moving away from us faster than nearby galaxies, i.e., a galaxy at distance d from us moving away at velocity V = Hd, where H is Hubble’s constant. Hence, light from distant galaxies is redshift so much that visible light is moved to the infrared and microwave regions that are invisible to the observer.

An alternative to the Big Bang explanation of Olbers paradox is that the static and infinite Universe is not transparent, and the light from distant galaxies is absorbed by cosmic dust, so that there is a bound on the distance from which light can reach the observer. However, astronomers dismiss this explanation based on the second law of thermodynamics that states there can be no material hotter than its surroundings that does not give off radiation. Hence, there is no material which can be uniformly distributed through space and yet able to absorb galaxy light without increasing in temperature. Therefore, the cosmic dust would heat up and soon reradiate the energy that again results in intense uniform radiation as bright as the collective of the galaxies themselves, once again giving a bright night sky which is not observed.  http://www.crystalinks.com/olber’s_paradox.html

Problem

The problem with Big Bang explanation of Olbers paradox is that the Universe is unequivocally not transparent because of ubiquitous submicron cosmic dust, and therefore the distance from which galaxy light can reach the observer is indeed bounded. The second law is not violated, however. In fact, QED induced redshift based on QM allows submicron cosmic dust to redshift visible light to infrared and microwaves regions of the EM spectrum without increasing in temperature. QM stands for quantum mechanics, QED for quantum electrodynamics, and EM for electromagnetic. Therefore, a static infinite Universe without the Big Bang explains Olbers paradox.

QED redshift in Cosmic Dust instead of Hubble’s Doppler shift

QED induced redshift is a consequence of QM constraints placed on the conservation of energy in submicron dust particles. QM precludes cosmic dust from having the specific heat capacity necessary to conserve absorbed galaxy photons by an increase in temperature. Photons are created from the EM confinement of the absorbed galaxy photon within the dust particle. See http://www.nanoqed.org at “Dark Energy and Cosmic Dust” and “Reddening and Redshift,” 2009.

QED induced redshift may be understood from QM by the creation of photons of wavelength Lo upon supplying EM energy to a QM box with walls separated by Lo/2. For a galaxy photon absorbed in a spherical particle of diameter D, the QED photons are created at a wavelength Lo = 2nD, where n is the index of refraction of the particle. Cosmic dust is generally amorphous silicate having n = 1.45 and diameters D < 0.5 microns. For example, at D = 0.25 microns, the QED created photons has Lo = 0.745 microns, and therefore an absorbed Lyman-alpha photon having L = 0.1216 microns in galaxy light is redshift to Z = (Lo – L)/L. ~ 5. If the QED redshift is interpreted by Doppler shift, the galaxy recession velocity is 95 % of the speed of light when in fact the Universe is not expanding at all, thereby negating any and all need for the Big Bang to explain our Universe.

Moreover, QED redshift in cosmic dust has been suggested to explain brightness in the Tolman test and time dilation in Supernova explosions. In this regard, a critique of Doppler redshift from Hubble theory in relation to QED induced redshift is given in http://www.nanoqed.org/resources/Press_Release/Redshift%20by%20Cosmic%20Dust%20trumps%20Hubble%20and%20Tired%20Light%20Theories.htm  Moreover, QED redshift in cosmic dust resolves the galaxy rotation problem and negates the need for MOND. See http://www.nanoqed.org/resources/Press_Release/Redshift%20in%20cosmic%20dust%20resolves%20the%20galaxy%20rotation%20problem%20without%20dark%20matter%20and%20MOND.htm

Conclusions

1. Olbers paradox need not rely on the Doppler redshift in light from distant galaxies in a finite and expanding Universe.
2. QED redshift of galaxy light by submicron cosmic dust explains Olbers paradox in an infinite and non-expanding static Universe.
3. Given the fact the Universe is permeated by cosmic dust, it is highly likely that the redshift measured by Hubble was QED induced redshift having nothing to do with the Big Bang and an expanding Universe.
4. In a static infinite Universe, there is no gravitational collapse and no need for the cosmological constant or the Big Bang.

Mystery of Lightning in the Iceland volcano solved by Nanoparticles?

Charge produced at the instant nanoparticles form upon rubbing of ash particle surfaces may solve the long-standing mystery of how lightning in volcanoes is electrified.

Background

The lightning observed in the plume of the Iceland volcano has renewed interest not only in how the volcano is electrified, but also how ice in the updraft of a thunderstorm produces lightning.

The electrification of volcanoes is generally thought caused by the rubbing of solid ash particles while that in thunderstorms is by the rubbing of ice particles. But the mechanism by which rubbing of particles produces the electrification has remained a mystery. See http://www.livescience.com/environment/volcano-lightning-Eyjafjallajokull-100420.html

Common belief is that rubbing removes electrons from particle surfaces, but this is unlikely because the electron is more tightly bound to the atom than the atoms are bound to each other, and therefore rubbing tends to only produce tiny clusters of neutral atoms called nanoparticles (NPs). Indeed, electrons are unlikely to be removed from a material by any form of mechanical energy. By the photoelectric effect, Einstein over a century ago showed only electromagnetic (EM) radiation may remove electrons from a material.

Hypothesis

Observation based on the foregoing allow the hypothesis that NPs comprising clusters of otherwise neutral atoms upon forming by rubbing solid surfaces somehow produce the EM radiation that by the photoelectric effect charges the NP by removing electrons.

Lightning by NPs in Thunderstorms

In the updraft of the thunderstorm, moisture is carried upward at high velocity and freezes at about 10,000 m. Submicron NPs may be formed directly from the moisture, but generally millimeter sized ice particles are produced. With the ice particles moving upward, other ice particles already having reached maximal height are falling downward to the earth under gravity. NPs generally form by the rubbing of particle surfaces in the collisions between upward and downward moving ice particles.

Of importance is the size differences between macroscopic particles and NPs. QM allows atoms in the macroscopic ice particles to have the thermal kT energy necessary absorb EM energy. Here QM stands for quantum mechanics, k for Boltzmann’s constant, and T for absolute. Classically, the atom in NPs is allowed to store the same amount of thermal energy as in macroscopic particles. But QM limits the amount of thermal energy stored by the atom depending on the particle size and temperature. At ambient and freezing temperatures, most of the thermal energy of the atom is stored at wavelengths greater than about 50 microns, but rapidly vanishes for NPs having wavelengths of a few microns. Therefore, at the instant the NPs form, the atoms have thermal energy in excess of that allowed by QM. If the NPs could increase in temperature, the excess thermal energy would be conserved. But QM also requires the specific heat of the atoms in NPs to vanish, and therefore the excess thermal energy cannot be conserved by an increase in temperature.

Conservation may only proceed by the QED induced up-conversion of the excess thermal energy in the FIR to the EM confinement frequency of the NP. Since the submicron size of the NP confines the FIR energy to EM frequencies in the UV and beyond, the NP spontaneously charge positive and emit electrons by the photoelectric effect. With the earth surface charged positive prior to the thunderstorm, the electrons attach to the downward falling ice particles and tend to charge the earth negative. Accumulation of charge from NPs during the storm therefore produces a large potential difference between the thundercloud and the earth that upon electrical breakdown creates cloud-to-ground lightning. However, the potential difference may occur within the thundercloud itself as commonly observed in cloud-to-cloud lightning.

However, only submicron NPs produce the ionizing radiation at UV or higher levels necessary to produce charge that electrifies the thunderstorm. Micron or larger sized ice articles that form on rubbing lack the EM confinement of thermal energy and only produce non-ionizing IR or FIR radiation.

Volcano Lightning by NPs

The charging process in volcanic lightning is similar to that in thunderstorms except that the NPs are produced by the rubbing of macroscopic particles of ash instead of ice. The ash particles are ejected from the volcano at high velocity only to collide and rub with those particles falling back to the volcano. Again, charge separation occurs as the positive charged NPs tend to move upward leaving the free electrons to attach to the downward falling particles.

Unlike thunderstorms, the ash need not move to high altitude to form solid particles, and therefore volcanic lightning is more efficient than that in thunderstorms, and therefore potential differences can reach breakdown over shorter separation distances. As shown in the thumbnail, volcano lightning is observed by electrical breakdown within the ash plume itself as in cloud-to-cloud lightning of thunderstorms.

Conclusions

The mysterious source of charge in thundercloud and volcano lightning finds commonality in the hypothesis that electrification in all natural processes is unified by rubbing NPs off solid surfaces. Other natural world mysteries possibly solved by NPs include Gecko walking on ceilings, X-rays from pulling Scotch tape from the roll, flow electrification in gasoline fires, ball lightning and St. Elmo’s fire, enhanced chemical reactions in tribochemistry. See “Unified Theory of Electrification in Natural Processes,” and other papers in http://www.nanoqed.org/ , 2009-10